

DIGITISATION: ECONOMIC AND SOCIAL IMPACTS IN RURAL AREAS

# **Mapping Digital Technologies**

**Taxonomy and Inventory of Digital Game Changers** 

Manlio Bacco - National Research Council (CNR), Italy – manlio.bacco@isti.cnr.it Silvia Rolandi - University of Pisa (UNIPI), Italy - silvia.rolandi@agr.unipi.it

10 September 2020

First RDF meeting



DESIRA receives funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 818194. The content of this document does not reflect the official opinion of the European Union. Responsibility for the information and views expressed therein lies entirely with the author(s).



# Outline



# A toolkit for DESIRA Living Labs

- inventory of digital tools
- application scenarios
- digital technologies
- socio-economic impacts

# **Cyber-Physical Systems**

physical-digital-physical loop

### **A Toolkit for DESIRA Living Labs**





**OBJECTIVE** – supporting Living Labs in their work by providing:

- an inventory of digital tools collected by DESIRA, and of interest for agriculture, forestry, and rural areas
- application scenarios derived from the inventory of digital tools
- understanding of the digital technologies in use by tools
- qualitative evaluations of socioeconomic impacts of the digital technologies

### **Inventory of Digital Tools**

Through an internal survey performed online, DESIRA has collected more than 600 digital tools of interest for agriculture, forestry, and rural areas (domains).

DESIRA looked for scientific projects, prototypes, tools already in the market, private and public services, and so on.

### **SEARCHABLE INVENTORY**

- \* in different domains
- \* understanding of the digital technologies used by digital tools
- \* qualitative assessment of socioeconomic impacts

### rural areas

Ytú, icómo pones ARAGÓN EN TU MESA

LVM GEO





### agriculture

Desira







all credits for images to their respective owners

### **Application scenarios**

Desira

From the inventory, DESIRA has derived a map of application scenarios.

**Application Scenario:** technical context in which a digital tool is used, the involved actors, and the interactions among the actors and with the digital tool.



### **Digital technologies** the potential to change the game

**Industry 4.0** technologies have been considered as main reference.

For digitalisation to occur, **basic conditions** - such as ICT infrastructures, connectivity, networks - and **enablers -** such as digital skills and investments - are needed\*.

If basic conditions are met and enablers are in place, digital technologies have the potential to change the game. Their joint use (*integration*) can amplify the effects.

#### A key enabler of integration is the CPS paradigm.

\* N. M. Trendov, S. Varas and M. Zenf, "Digital Technologies in Agriculture and Rural Areas: Status Report," *Food and Agricultural Organization of the United Nations*, 2019.



#### **Digital Technologies**

social media and social networks

web sites and online platforms

cloud/edge services and applications

sensors, drone and/or satellite imagery (data sources)

blockchain (DLTs) and other certification / traceability applications and services

data analysis

augmented reality / virtual reality (XR)

3D/4D printing

artificial intelligence

autonomous systems and robotics

connectivity

### **Digital technologies** the potential to change the game





| DIGITAL TECHNOLOGIES                                      | DESCRIPTION AND EXAMPLES                                                           |
|-----------------------------------------------------------|------------------------------------------------------------------------------------|
| social media and social networks                          | social tools for interaction / access to services                                  |
| web sites and online platforms                            | web tools for interaction or to access/<br>offer services in a coordinated manner  |
| cloud/edge services and applications                      | services available through mobile applications, web platforms, or other interfaces |
| sensors, drone and/or satellite imagery (data sources)    | use of sensors in the field, drone (UAV) and satellite imagery to collect data     |
| blockchain or other certification / traceability services | services (trust-dependent) to certify/trace products and processes                 |
| data analysis                                             | techniques to extract information from data                                        |
| augmented reality / virtual reality (XR)                  | extended reality techniques for training, education, or other purposes             |
| 3D/4D printing                                            | production of 3D/4D objects through a printing-like process (programmable or not)  |
| artificial intelligence                                   | use of AI to analyse data / suggest actions                                        |
| autonomous systems and robotics                           | robots / systems functioning autonomously                                          |
| connectivity                                              | landline and cellular connections                                                  |

### **Cyber-Physical Systems**



DESIRA looks to CPSs as a conceptual model.

**DEVICE (sensing)**: able to read a physical state and transform it into digital (raw) data

**DEVICE (computing)**: fed with digital (raw) data, can extract useful information to support decisions and / or actions

**DEVICE (actuator)**: once a decision has been taken and an action consequently defined, the latter can be applied to the system to change its state

**SYSTEM**: all devices together in a given context and working towards the same purpose form a system

**SYSTEM-OF-SYSTEMS**: multiple systems interacting among them



National Institute of Standards and Technology (NIST) framework for CPS





The CPS model opens to the so-called **physical-digital-physical loop**.

<u>physical-to-digital</u> is the very basis of digitization. <u>digital-to-physical</u> means transforming collected data into valuable information to be used for: automating processes, feeding DSS, providing recommendations, ...



#### **EXAMPLE**

Sensors in the field (local sensing) collect data about the **soil status**. A physical status (soil status) is transformed into **digital data** (moisture level, N concentration, ...); collected data are transmitted, stored, and analysed (data analytics) in a centralized **system** (cloud). The information extracted from data is sent back to the farmer that can take **informed decisions**; for instance, irrigating or applying nitrogen.

# digital technologies, application scenarios, and socio-economic impact





### **Socio-economic impacts**



To contribute at the creation of the toolkit while identifying typologies of socio-economics impacts in relation to the selected digital technologies identified as potential game changers.

## Methodology









#### **Domain:**

it refers to the macro-dimensions involved in the digitalisation process as emerging from the literature review.

### Area of impact:

sub-dimensions or specific areas within each domain.

### **Outcome:**

for each area of impact, the main outcomes of digital technologies have been identified and selected.



### Mapping DTs and outcomes 1/2

| DOMAIN   | AREA OF IMPACT | OUTCOME IN               | Social Media | Cloud | Local/remote sensing | Distributed ledger | Data analytics | Augmented reality | 3D printing | Artificial intelligence | Autonomous systems | Connectivity |
|----------|----------------|--------------------------|--------------|-------|----------------------|--------------------|----------------|-------------------|-------------|-------------------------|--------------------|--------------|
|          |                | Autonomy                 | x            | x     | x                    | x                  | х              | х                 | x           | x                       | х                  | Х            |
|          | Organization   | Cooperation              | х            | х     |                      | х                  |                |                   |             |                         | х                  | х            |
| Economic |                | Financial risk           | х            |       | х                    | х                  | х              |                   |             | х                       | х                  |              |
|          |                | Incomes                  |              |       | х                    | х                  | х              | х                 | x           | х                       | х                  | х            |
|          |                | Marketing                | x            |       | x                    |                    | х              | x                 |             | х                       |                    | х            |
|          |                | Product/process security | х            |       | х                    |                    | х              |                   |             | х                       | х                  | х            |
|          |                | Productivity             |              | x     | x                    |                    | х              | x                 |             | х                       | х                  | х            |
|          |                | Resilience               | х            | х     | х                    |                    | х              |                   | x           |                         | х                  | х            |
|          |                | Resource efficiency      |              |       | х                    |                    | х              |                   |             | x                       | х                  | х            |
|          |                | Responsibility           | х            |       |                      | х                  | х              |                   |             |                         |                    |              |
|          |                | Transaction costs        | х            |       | х                    | х                  | х              |                   |             | х                       |                    | х            |
|          |                | Bargaining power         |              | х     | х                    |                    | х              |                   |             | x                       | х                  | х            |
|          | Value chain    | Food quality             | x            |       | x                    | x                  | х              |                   |             | x                       | х                  | х            |
|          |                | Resource efficiency      |              |       |                      |                    | х              |                   |             | x                       |                    | х            |
|          |                | Transparency             |              |       | х                    |                    | х              |                   |             | х                       |                    | х            |

Assessing the socio-economic impact of digitalisation in rural areas

### Mapping DTs and outcomes 2/2

| DOMAIN   | AREA OF IMPACT | OUTCOME IN               | Social Media | Cloud | Local / remote sensing | Distributed ledger | Data analytics | Augmented reality | 3D printing | Artificial intelligence | Autonomous systems | Connectivity     |  |
|----------|----------------|--------------------------|--------------|-------|------------------------|--------------------|----------------|-------------------|-------------|-------------------------|--------------------|------------------|--|
|          |                | Autonomy                 | х            | х     | х                      | х                  | х              | х                 | x           | х                       | х                  | Х                |  |
|          |                | Cooperation              | ×            | x     |                        | x                  |                |                   |             |                         | х                  | х                |  |
|          | Organization   | Financial risk           | х            |       | х                      | х                  | х              |                   |             | х                       | х                  | $\triangleright$ |  |
|          |                | Incomes                  |              |       | Х                      | Х                  | Х              | Х                 | Х           | Х                       | х                  | х                |  |
|          |                | Marketing                | х            |       | х                      |                    | х              | х                 |             | х                       |                    | х                |  |
|          |                | Product/process security | х            |       | х                      |                    | х              |                   |             | х                       | х                  | х                |  |
|          |                | Productivity             |              | х     | х                      |                    | х              | х                 |             | х                       | х                  | x                |  |
|          |                | Resilience               | х            | х     | х                      |                    | х              |                   | x           |                         | х                  | х                |  |
|          |                | Resource efficiency      |              |       | х                      |                    | х              |                   |             | х                       | х                  | х                |  |
| Economic |                | Responsibility           | х            |       |                        | х                  | х              |                   |             |                         |                    |                  |  |
|          |                | Transaction costs        | х            |       | х                      | х                  | х              |                   |             | х                       |                    | х                |  |
|          |                | Bargaining power         |              | х     | х                      |                    | x              |                   |             | х                       | х                  | х                |  |
|          | Value chain    | Food quality             | х            |       | х                      | х                  | х              |                   |             | х                       | x                  | х                |  |
|          |                | Resource efficiency      |              |       |                        |                    | х              |                   |             | х                       |                    | х                |  |
|          |                | Transparency             |              |       | x                      |                    | ×              |                   |             | ×                       |                    | x                |  |



- **Question**: Which digital technologies can be useful to e.g. reducing financial risks?
- Multiple impacts: each digital technology affects several areas of impact
- System: combination / integration of DTs that produces effects relevant in specific areas

# an example 1/2



#### **EXAMPLE:** how to make irrigation efficient?

<u>Soil monitoring system</u>: **local sensing** in the field collect humidity data, then delivered to a **cloud** system and analyzed (**data analytics**). The information is sent to the farmer for decision support.

<u>Impacts:</u> the main effects of the soil monitoring system are reported below.

| DOMAIN      | AREA OF IMPACT    | Ουτςομε        | Ĺ     | S                       |                |
|-------------|-------------------|----------------|-------|-------------------------|----------------|
|             |                   |                | Cloud | Local/remote<br>sensing | Data analytics |
| Economic    | Organization      | Autonomy       | Х     | Х                       | Х              |
|             |                   | Productivity   | Х     | Х                       | Х              |
|             |                   | Resilience     | Х     | Х                       | Х              |
|             | Value chain       | Bargaing power | Х     | Х                       | Х              |
| Environment | Natural resources | Water          | Х     | Х                       | Х              |
| Social      | Rights            | Resilience     | Х     | Х                       | Х              |



#### **EXAMPLE:**

#### how to make irrigation efficient?

#### Soil monitoring system:

sensors in the field collect data about the humidity status transforming them in
digital data transmitted to a cloud system
and analyzed. The information is sent back
to the farmer for decision support.

<u>Impacts</u>: the main effects of the soil monitoring system (consisting of three digital technologies) are reported below.

# an example 2/2



### **EXAMPLE:** how to make irrigation efficient? – Soil monitoring system

#### <u>Outcomes</u>

- -> autonomy: the decision to irrigate no longer depends on evaluations by experts
- -> bargaining power: offer a more eco-sustainable product that is appreciated on the market -> resilience (social): facilitates fairer access to water

| DOMAIN      | AREA OF IMPACT    | ουτςομε             | Digital tecnologies |                         |                |  |  |  |  |
|-------------|-------------------|---------------------|---------------------|-------------------------|----------------|--|--|--|--|
|             |                   |                     | Cloud               | Local/remote<br>sensing | Data analytics |  |  |  |  |
| Economic    | Organization      | Autonomy            | Х                   | Х                       | Х              |  |  |  |  |
|             |                   | Productivity        | Х                   | Х                       | Х              |  |  |  |  |
|             |                   | Resilience          | Х                   | Х                       | Х              |  |  |  |  |
|             | Value chain       | Bargaining<br>power | Х                   | Х                       | Х              |  |  |  |  |
| Environment | Natural resources | Water               | Х                   | Х                       | Х              |  |  |  |  |
| Social      | Rights            | Resilience          | Х                   | Х                       | Х              |  |  |  |  |

### Conclusions



### **TOOLKIT FOR DESIRA LIVING LABS**

- (under development) to support the work of DESIRA Living Labs
- search the **inventory** of digital tools and add/modify tools and related info
- application scenarios as exemplary contexts (growing list)
- **digital technologies** linked with the digital tools relying on them
- qualitative **socio-economic impacts**

**CYBER-PHYSICAL SYSTEMS** (CPSs) as a reference framework

• physical-digital-physical (PDP) loop



DIGITISATION: ECONOMIC AND SOCIAL IMPACTS IN RURAL AREAS

# Thank you & follow us online!



